
poplar_oeaddlne Documentation
Release 1.3.0

Chris Binckly, 2665093 Ontario Inc.

Jul 22, 2020

Contents

1 Walkthrough 1
1.1 Building the View Script . 1

1.1.1 Import accpac and Scaffold . 1
1.1.2 Implement the onAfter call . 2
1.1.3 Add Parameters . 4
1.1.4 Testing . 5

1.2 Building the Screen Script . 5
1.2.1 Import accpac and Scaffold . 5
1.2.2 Implement the onAfter call . 7
1.2.3 Add Parameters . 9
1.2.4 Testing . 10

1.3 Making an Extender Module . 10
1.3.1 Module format . 10
1.3.2 View Scripts . 11

1.4 Custom Tables for Item Mappings . 11
1.4.1 Designing the Table Schema . 12
1.4.2 Creating the Table Schema . 12

1.4.2.1 Using Custom Tables . 12
1.4.2.2 Crafting by Hand . 12

1.4.3 Adding Entries to the Table . 13
1.4.4 Adding the Lookup to the Script . 13

2 Add OE Line - View Script 17

3 Add OE Line - Screen Script 19

4 Resources 21
4.1 All View Calls . 21

Python Module Index 27

Index 29

i

ii

CHAPTER 1

Walkthrough

1.1 Building the View Script

A view script it is. It will attach to the OE0500 Order Headers detail view. On insert it needs to:

1. Check if the operation was successful.

2. Check if the item matches “A1-103/0”.

3. Generate a new record in the view.

4. Populate the record with the Item “A1-105/0” Qty 1.

5. Save the record.

1.1.1 Import accpac and Scaffold

All scripts start the same, import all members of accpac.py:

from accpac import *

Note: Importing * is generally not a good idea, you don’t know what is being pulled into the namespace. You can
import only the things you need, plus some extras, with a little trial and error.

Now we need to decide which events to listen to, do we need to check the record before or after insert? Before the
operation occurs we can’t know whether it was successful and it may fail. If we were to act before a successful
operation we may create new lines when the triggering line failed.

onAfter seems the correct choice. Add the appropriate method with the correct signature. The
poplar_oeaddlne.resources.all_view_calls is a good place to start.

1

poplar_oeaddlne Documentation, Release 1.3.0

from accpac import *

def onAfterInsert(result):
"""After updating, if the item is "A1-103/0", insert a new line."""

Check if the operation was successful

Check if the item matches

Generate a new record in the view

Populate the record

Save the record
pass

1.1.2 Implement the onAfter call

The docs for poplar_oeaddlne.resources.all_view_calls.onAfterInsert() tell us that the
result argument contains 0 if the insert succeeded and that the function doesn’t need to return.

Once we have checked the result, we need to see if the item matches. Use the special view object me exposed by
accpac to access the current record in the view and use me.get(field) to retrive the item number inserted.

Field names can be found by looking them up using the Extender View Info Inquiry or using the Sage
accpacViewInfo utility.

from accpac import *

def onAfterInsert(result):
"""After updating, if the item is "A1-103/0", insert a new line."""

Check if the operation was successful
if result != 0:

return

Check if the item matches
if me.get("ITEM") == "A1-103/0":

Generate a new record in the view

Populate the record

Save the record

Generating a new line is generally accomplished by running two operations on the view. The first, .recordClear()
resets the state of the view. The second, .recordGenerate(), creates a new record in the view. Both return 0
when successful.

What should happen if these operations fail? There is always a silent option, but then the user may be confused as to
why the line doesn’t isn’t created when they expect it to.

Extender provides a number of ways to notify. The first is using the showMessage(str), showWarning(str),
showError(str) method. These put messages on the error stack for Sage to display. They may not be displayed
immediately, which can be helpful for situtations where errors may occur in bulk (such as during an import). They
also provide levels and a familiar interace.

2 Chapter 1. Walkthrough

poplar_oeaddlne Documentation, Release 1.3.0

The second is to use showMessageBox(str) which will pop up a dialog immediately. This is generally a better
option for things the user needs to know now and for any debugging you need. Show a message box to the user on
failure.

from accpac import *

def onAfterInsert(result):
"""After updating, if the item is "A1-103/0", insert a new line."""

Check if the operation was successful
if result != 0:

return

Check if the item matches
if me.get("ITEM") == "A1-103/0":

Generate a new record in the view
rc = me.recordClear()
rg = me.recordGenerate()

if rc != 0 or rg != 0:
showMessageBox("Failed to generate new line.")
return

Populate the record

Save the record

Now we just need to populate the record and save it. Set fields in the current record by using .put(field,
value). Once populated, use .insert() to add write it to the database. These operations also return 0 on success.

from accpac import *

def onAfterInsert(result):
"""After updating, if the item is "A1-103/0", insert a new line."""

Check if the operation was successful
if result != 0:

return

Check if the item matches
if me.get("ITEM") == "A1-103/0":

Generate a new record in the view
rc = me.recordClear()
rg = me.recordGenerate()

if rc != 0 or rg != 0:
showMessageBox("Failed to generate new line.")
return

Populate the record
pi = me.put("ITEM", "A1-105/0")
pq = me.put("QTYORDERED", 1)

if pi != 0 or pq != 0:
showMessageBox("Failed to put values in new line.")
return

(continues on next page)

1.1. Building the View Script 3

poplar_oeaddlne Documentation, Release 1.3.0

(continued from previous page)

Save the record
sv = me.insert()

if sv != 0:
showMessageBox("Failed to save new line.")

return None

And there you have it. A view script that does exactly what we need. Are there any improvements to be had?

1.1.3 Add Parameters

What if the customer wants to change the items? Instead of “A1-103/0” triggering they may want “A1-900/G” to be
the trigger. What if they wanted to add a quantity of 5 instead of 1? At present, they’d need to change the script
because the items and quantity are hard coded.

View scripts support up to 4 user provided parameters of up to 250 characters, so 1000 characters of arguments to play
with. They are exposed by accpac as Parameter1, Parameter2, Parameter3, Parameter4.

Let’s change the script to accept parameters from the user.

"""OE0500_oe_add_line.py

Parameters

- Parameter1: Item number to trigger new line
- Parameter2: Item number to set in new line
- Parameter3: Item quantity to set.

"""
from accpac import *
from accpac import (me,
Parameter1, Parameter2, Parameter3,
showMessageBox,)

def onAfterInsert(result):
"""After updating, if the item is Parameter1, insert a new line."""

Check if the operation was successful
if result != 0:

return

Check if the item matches
if me.get("ITEM") == Parameter1:

Generate a new record in the view
rc = me.recordClear()
rg = me.recordGenerate()

if rc != 0 or rg != 0:
showMessageBox("Failed to generate new line.")
return

Populate the record
pi = me.put("ITEM", Parameter2)

(continues on next page)

4 Chapter 1. Walkthrough

poplar_oeaddlne Documentation, Release 1.3.0

(continued from previous page)

pq = me.put("QTYORDERED", Parameter3)

if pi != 0 or pq != 0:
showMessageBox("Failed to put values in new line.")
return

Save the record
sv = me.insert()

if sv != 0:
showMessageBox("Failed to save new line.")

return None

1.1.4 Testing

Time for testing. Fire up your favourite database and install the script in the Extender -> Setup -> Scripts screen.

Configure it by attaching it to the OE0500 view in the Extender -> Setup -> View Events, Scripts and Workflow.

1.2 Building the Screen Script

A screen script it is. It will attach to the OE1100 Order Entry screen. On insert of a new detail line, it needs to:

1. Check if the operation was successful.

2. Check if the item matches “A1-103/0”.

3. Generate a new record in the view.

4. Populate the record with the Item “A1-105/0” Qty 1.

5. Save the record.

1.2.1 Import accpac and Scaffold

All scripts start the same, import all members of accpac.py:

from accpac import *

Note: Importing * is generally not a good idea, you don’t know what is being pulled into the namespace. You can
import only the things you need, plus some extras, with a little trial and error.

Because this is a screen script, we must create a new instance of the accpac.UI class, initialize its parent, and tell it
to .show() itself. To get a custom UI or change going, create a subclass.

from accpac import *

class OeAddLineUI(UI):
"""A UI customization that monitors the order details for a trigger
item being inserted and adds a new line."""

(continues on next page)

1.2. Building the Screen Script 5

poplar_oeaddlne Documentation, Release 1.3.0

(continued from previous page)

def __init__(self):
super().__init__()
self.show()

def main(*args, **kwargs):
ui = OeAddLineUI()

When working with screens Extender exposes accpac.UIDatasource objects. These act very similar to views.
They allow access to the data sources underlying the current screen. Data sources are always composed with one
another, making coordinated access easy.

Datasources are opened using their unique Module Name. Module names can be found using the RotoID for the
program (O/E Order Entry in our case - OE1100) and looking up the details in accpacInfo.

A little digging reveals that the datasource module id for Order Details is adsOEORDD. Open a datasource using
UI.openDataSource(module_id).

from accpac import *

class OeAddLineUI(UI):
"""A UI customization that monitors the order details for a trigger
item being inserted and adds a new line."""

def __init__(self):
super().__init__()

Open the data source
self.adsOEORDD = self.openDataSource("adsOEORDD")
self.show()

def main(*args, **kwargs):
ui = OeAddLineUI()

Now we need to decide which events to listen to, do we need to check the record before or after insert? Before the
operation occurs we can’t know whether it was successful and it may fail. If we were to act before a successful
operation we may create new lines when the triggering line failed.

onAfter seems the correct choice. Assign a call back function to the onAfterInsert attribute of the
adsOEORDD datasource.

from accpac import *

class OeAddLineUI(UI):
"""A UI customization that monitors the order details for a trigger
item being inserted and adds a new line."""

def __init__(self):
super().__init__()

Open the data source
self.adsOEORDD = self.openDataSource("adsOEORDD")

Assign the onAfter callback to the *function*
self.adsOEORDD.onAfterInsert = self.adsOEORDDonAfterInsert

self.show()

(continues on next page)

6 Chapter 1. Walkthrough

poplar_oeaddlne Documentation, Release 1.3.0

(continued from previous page)

def adsOEORDDonAfterInsert(self, result):
"""After updating, if the item is "A1-103/0", insert a new line."""
Check if the item matches

Generate a new record in the view

Populate the record

Save the record
pass

def main(*args, **kwargs):
ui = OeAddLineUI()

1.2.2 Implement the onAfter call

The accpac.UIDatasource.onAfterInsert callback does not receive arguments and is only triggered on a
successful insert. Now we need to see if the item matches. Use the .get(field) method on the datasource to get
the current value. Field names can be found by looking them up using the Extender View Info Inquiry or using the
Sage accpacViewInfo utility.

from accpac import *

class OeAddLineUI(UI):
"""A UI customization that monitors the order details for a trigger
item being inserted and adds a new line."""

def __init__(self):
super().__init__()

Open the data source
self.adsOEORDD = self.openDataSource("adsOEORDD")

Assign the onAfter callback to the *function*
self.adsOEORDD.onAfterInsert = self.adsOEORDDonAfterInsert

self.show()

def adsOEORDDonAfterInsert(self, result):
"""After updating, if the item is "A1-103/0", insert a new line."""

Check if the item matches
if self.adsOEORDD.get("ITEM") == "A1-103/0":

Generate a new record in the view

Populate the record

Save the record
pass

def main(*args, **kwargs):
ui = OeAddLineUI()

1.2. Building the Screen Script 7

poplar_oeaddlne Documentation, Release 1.3.0

Generating a new line is generally accomplished by running two operations on the datasource. The first, .
recordClear() resets the state of the datasource. The second, .recordGenerate(), creates a new record
in the datasource. Both return 0 when successful.

What should happen if these operations fail? There is always a silent option, but then the user may be confused as to
why the line doesn’t isn’t created when they expect it to.

Extender provides a number of ways to notify. The first is using the showMessage(str), showWarning(str),
showError(str) method. These put messages on the error stack for Sage to display. They may not be displayed
immediately, which can be helpful for situtations where errors may occur in bulk (such as during an import). They
also provide levels and a familiar interace.

The second is to use showMessageBox(str) which will pop up a dialog immediately. This is generally a better
option for things the user needs to know now and for any debugging you need. Show a message box to the user on
failure.

from accpac import *

class OeAddLineUI(UI):
"""A UI customization that monitors the order details for a trigger
item being inserted and adds a new line."""

def __init__(self):
super().__init__()

Open the data source
self.adsOEORDD = self.openDataSource("adsOEORDD")

Assign the onAfter callback to the *function*
self.adsOEORDD.onAfterInsert = self.adsOEORDDonAfterInsert

self.show()

def adsOEORDDonAfterInsert(self, result):
"""After updating, if the item is "A1-103/0", insert a new line."""

Check if the item matches
if self.adsOEORDD.get("ITEM") == "A1-103/0":

Generate a new record in the view
rc = self.adsOEORDD.recordClear()
rg = self.adsOEORDD.recordGenerate()

if rc != 0 or rg != 0:
showMessageBox("Failed to generate new line.")

return

Populate the record

Save the record
pass

def main(*args, **kwargs):
ui = OeAddLineUI()

Now we just need to populate the record and save it. Set fields in the current record by using .put(field,
value). Once populated, use .insert() to add write it to the database. These operations also return 0 on success.

8 Chapter 1. Walkthrough

poplar_oeaddlne Documentation, Release 1.3.0

from accpac import *

class OeAddLineUI(UI):
"""A UI customization that monitors the order details for a trigger
item being inserted and adds a new line."""

def __init__(self):
super().__init__()

Open the data source
self.adsOEORDD = self.openDataSource("adsOEORDD")

Assign the onAfter callback to the *function*
self.adsOEORDD.onAfterInsert = self.adsOEORDDonAfterInsert

self.show()

def adsOEORDDonAfterInsert(self, result):
"""After updating, if the item is "A1-103/0", insert a new line."""

Check if the item matches
if self.adsOEORDD.get("ITEM") == "A1-103/0":

Generate a new record in the view
rc = self.adsOEORDD.recordClear()
rg = self.adsOEORDD.recordGenerate()

if rc != 0 or rg != 0:
showMessageBox("Failed to generate new line.")

return

Populate the record
pi = self.adsOEORDD.put("ITEM", "A1-105/0")
pq = self.adsOEORDD.put("QTYORDERED", 1)

if pi != 0 or pq != 0:
showMessageBox("Failed to put values in new line.")
return

Save the record
sv = self.adsOEORDD.insert()

if sv != 0:
showMessageBox("Failed to save new line.")

return None

def main(*args, **kwargs):
ui = OeAddLineUI()

And there you have it. A view script that does exactly what we need. Are there any improvements to be had?

1.2.3 Add Parameters

What if the customer wants to change the items? Instead of “A1-103/0” triggering they may want “A1-900/G” to be
the trigger. What if they wanted to add a quantity of 5 instead of 1? At present, they’d need to change the script
because the items and quantity are hard coded.

1.2. Building the Screen Script 9

poplar_oeaddlne Documentation, Release 1.3.0

View scripts support up to 4 user provided parameters of up to 250 characters, so 1000 characters of arguments to play
with. They are exposed by accpac as Parameter1, Parameter2, Parameter3, Parameter4.

Unfortunately, screens scripts do not allow user provided parameters. We will see another solution later, when we add
custom tables.

1.2.4 Testing

Screen scripts must follow a specific naming convention and have a particular structure. The Roto ID of the screen
being customized must be present in one of the first two . delineated parts of the filename:

• OE1100.COMPANY.script_name.py: good

• COMPANY.OE1100.script_name.py: good

• COMPANY-script_name-OE1100.py: bad

The file must also start with a single line comment that includes the Roto ID:

OE1100
... The rest of my script.

With the file named correctly and the comment in place, time for testing. Fire up your favourite database and install
the script in the Extender -> Setup -> Scripts screen.

There is no need to configure screen scripts, if they are installed whey will be loaded when the screen is loaded. It is
best to restart the Sage desktop after installing but before testing your customization.

1.3 Making an Extender Module

Now that we have a working version, it is time to think about delivering it to the client. In almost all cases, the correct
way to distribute your scripts is in a module, even if you only have one.

A module allows you to group scripts together, track versions and author data, and autoamtically configure scripts at
module import time. Always wrap your tools in modules.

1.3.1 Module format

Extender modules use an INI style file that includes the metadata, scripts, and configuration in one file.

Create the new OEADDLNE module:

[MODULE]
id=OEADDLNE
name=OEADDLNE
desc=After an order line with itam A11030 is entered, enter one for A11050
company=2665093 Ontario Inc.
version=0.1.0
website=https://2665093.ca/

[SCRIPT]
FILENAME=OEADDLNE_OE1100_oe_add_line.py
>>> SCRIPT >>>
OE1100
from accpac import *

(continues on next page)

10 Chapter 1. Walkthrough

poplar_oeaddlne Documentation, Release 1.3.0

(continued from previous page)

...
<<< SCRIPT <<<

That is all it takes. Install modules from the Extender -> Setup -> Modules screen. The script will be installed
automatically, and when screen scripts are installed they are configured by default.

1.3.2 View Scripts

View scripts get an extra clause in the module file that defines the scripts configuration: which view it attaches to,
which parameters it accepts, etc.

Had we been deploying out view script, we could have made a module that included an additional VIEWSCRIPT
block:

[MODULE]
id=OEADDLNE
name=OEADDLNE
desc=After an order line with itam A11030 is entered, enter one for A11050
company=2665093 Ontario Inc.
version=0.1.0
website=https://2665093.ca/

[SCRIPT]
FILENAME=OEADDLNE_OE0500_oe_add_line.py
>>> SCRIPT >>>
from accpac import *
...
<<< SCRIPT <<<

[VIEWSCRIPT]
VIEWID=OE0500
UNIQID=2019050100000004
ACTIVE=1
ORDER=0
SCRIPT=OEADDLNE_OE0500_oe_add_line.py
P1=A1-103/0
P2=A1-105/0
P3=1

Now that we have a module, let’s get back to the question of how to make the mappings user configurable.

1.4 Custom Tables for Item Mappings

The screen script solution does what we need but is limited in that the item mappings are hard-coded. The user cannot
add new mappings themselves and if there are many then keeping them in the source becomes unwieldy.

Enter Extender’s Custom Tables. They make it easy to store, retrieve, and update tables specific to your customization
in the database.

Assume for now that each Item will only ever map to one other. We can define a database table, OEADDLNE.
VIITMMAP, to allow the user to manage the mappings.

1.4. Custom Tables for Item Mappings 11

poplar_oeaddlne Documentation, Release 1.3.0

1.4.1 Designing the Table Schema

Before creating a table it needs a schema. The correct fields and keys (which are also indexes) need to be identified.
Every item only maps to one other, we can use the trigger item as a key.

When thinking about keys, think about how you access the data. If you always use two fields together to retrieve from
a table, be sure to add a compound key on those fields.

We need the same fields as we had view script parameters, so the following should do:

Table name: VIITMMAP
Fields:

- TRIGITEM (str): item that triggers the new line
- NEWITEM (str): the item to insert
- QTYORDERED (bcd): the quantity ordered

Keys:
- (TRIGITEM,)

1.4.2 Creating the Table Schema

The table schema will be embedded in the module file. You have two options for creating it: interactively with the
Custom Tables tool or writing it by hand in the modules file.

1.4.2.1 Using Custom Tables

This is the best way to start. Once you get the hang of it you can craft them by hand.

To use the Custom Tables tool, start by creating a module:

1. Navigate to Extender -> Setup -> Modules

2. Insert a new row using the module name (OEADLNE)

Define the custom table:

1. Navigate to Extender -> Setup -> Custom Tables

2. Set the table name to OEADDLNE.VIITMMAP

3. Define the fields. Use accpacViewInfo or the extender enquiries to find the correct field names, finder
information, and description lookups.

4. Add the key in the Keys tab.

5. Save the table.

Now that the table is defined you can export the module from the Modules screen and the table definition will be
included.

1.4.2.2 Crafting by Hand

After a while you’ll be able to write table definitions by hand. To start, this is what is automatically generated on
module export:

[MODULE]
id=OEADDLNE
name=OEADDLNE
desc=Add an OE Order Line after a particular item is added.

(continues on next page)

12 Chapter 1. Walkthrough

poplar_oeaddlne Documentation, Release 1.3.0

(continued from previous page)

company=2665093 Ontario Inc
version=0.1.0
website=https://2665093.ca

[TABLE]
name=OEADDLNE.VIITMMAP
dbname=VIITMMAP

[FIELD1]
field=TRIGITEM
datatype=1
size=24
mask=%24C
desc=Trigger item number
ftable=IC0310
ffield=ITEMNO
lookup=FMTITEMNO

[FIELD2]
field=NEWITEM
datatype=1
size=24
mask=%24C
desc=Item number to insert
ftable=IC0310
ffield=ITEMNO
lookup=FMTITEMNO

[FIELD3]
field=QTYORDERED
datatype=6
size=10
decimals=5
desc=Quantity

[KEY1]
KEYNAME=TRIGITEM
FIELD1=TRIGITEM
allowdup=0

Simply add the SCRIPT block and we have a full module.

1.4.3 Adding Entries to the Table

Adding entries is easy using the Extender -> Setup -> Custom Table Editor. Simply open the editor, open the
OEADDLNE.VIITMMAP table, and start adding.

For now, try to add the item we know about, A1-103/0 -> A1-105/0@1.

1.4.4 Adding the Lookup to the Script

Now we just need to replace out hard coded values with a lookup from our custom table. Custom tables are accessed
through the view layer. Instead of opening them based on the View ID (i.e. VI0107), always access them by module
qualified table name. There is no guarantee that your table will always have the same roto, so don’t use it.

1.4. Custom Tables for Item Mappings 13

poplar_oeaddlne Documentation, Release 1.3.0

Because TRIGITEM is our key field, we will use it to look up the mapping. The lookup will go something like this:

view = openView("OEADDLNE.VIITMMAP")
view.recordClear()
view.put("TRIGITEM", itemno)
r = view.read()

Extender functions return 0 on success, so if r is 0 then there is a mapping for itemno and the view has read it in.
Any other return indicates that itemno is not a trigger item and no action is required.

from accpac import *

class OeAddLineUI(UI):
"""A UI customization that monitors the order details for a trigger
item being inserted and adds a new line."""

def __init__(self):
super().__init__()

Open the data source
self.adsOEORDD = self.openDataSource("adsOEORDD")

Open the custom table.
self.viitmmap = openView("OEADDLNE.VIITMMAP")

Assign the onAfter callback to the *function*
self.adsOEORDD.onAfterInsert = self.adsOEORDDonAfterInsert

self.show()

def get_trigger(self, itemno):
"""Get the trigger information for this item number from the table.

:param itemno: item number to loopkup trigger information for
:type itemno: str
:rtype: list
:returns:

- If the item number is not in the map table: []
- if the item number is in the table: [newitem, qtyordered]

"""

rc = self.viitmmap.recordClear()
pt = self.viitmmap.put("TRIGITEM", itemno)
r = self.viitmmap.read()

if r != 0 or pt != 0 or rc != 0:
return []

return [self.viitmmap.get("NEWITEM"),
self.viitmmap.get("QTYORDERED"),]

def adsOEORDDonAfterInsert(self, result):
"""After updating, if the item is "A1-103/0", insert a new line."""

Check if the item matches an item in the custom table map :
trigger will be [newitem, qty] if it does, [] (False) if it

(continues on next page)

14 Chapter 1. Walkthrough

poplar_oeaddlne Documentation, Release 1.3.0

(continued from previous page)

doesn't.
trigger = self.get_trigger(me.get("ITEM"))
if trigger:

Generate a new record in the view
rc = me.recordClear()
rg = me.recordGenerate()

if rc != 0 or rg != 0:
showMessageBox("Failed to generate new line.")

return

Populate the record
pi = me.put("ITEM", trigger[0])
pq = me.put("QTYORDERED", trigger[1])

if pi != 0 or pq != 0:
showMessageBox("Failed to put values in new line.")
return

Save the record
sv = me.insert()

if sv != 0:
showMessageBox("Failed to save new line.")

return None

def main(*args, **kwargs):
ui = OeAddLineUI()

Done. The custom table is now intergated with the script. The user can add and manage as many mappings as they’d
like with the custom table editor.

That’s all for now, just a few things to close out. . .

It is time to build the code. These narrated walkthroughs cover the development process for poplar_oeaddlne.
OE0500_oe_add_line and poplar_oeaddlne.OE1100_oe_add_line Python scripts, putting the final
script into an Extender module, and upgrading the module and script to lookup the item information from a custom
table.

1.4. Custom Tables for Item Mappings 15

poplar_oeaddlne Documentation, Release 1.3.0

16 Chapter 1. Walkthrough

CHAPTER 2

Add OE Line - View Script

This view script is intended to trigger when a new line is added to an order. When triggered, it tries to write a new line
to the order with an item defined in the parameters.

This script will always fail, causing an error to be raised from the view. It demonstrates a case in which the new script
approach is not suitable, use a Screen script (poplar_oeaddlne.OE1100_oe_add_line).

Insert a new OE line following the insert of a line with a particular item.

Part of an introductory training to Extender. Learn more at https://poplar_addoelne.rtfd.io.

Parameters:

• Parameter1: Item number to trigger insert after.

• Parameter2: Item number to insert

• Parameter3: Item

author: Chris Binckly
email: chris@2665093.ca
copyright: 2665093 Ontario Inc., 2019

This file is provided under a Creative Commons 4 Sharealike license. See https://creativecommons.org/licenses/by-sa/
4.0/ for details.

poplar_oeaddlne.OE0500_oe_add_line.onAfterInsert(result)
After a line with item Parameter1 is entered, insert line with item Parameter2.

Triggered after an insert of an OE Detail line. If the insert was successful and the item in the line is the same as
that provided in Parameter1, a new line is added with:

• LINETYPE: 1 - standard item line

• ITEM: Parameter2

• QTYORDERED: Parameter3

17

https://poplar_addoelne.rtfd.io
mailto:chris@2665093.ca
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

poplar_oeaddlne Documentation, Release 1.3.0

poplar_oeaddlne.OE0500_oe_add_line.onOpen()
onOpen of the script, take no action.

18 Chapter 2. Add OE Line - View Script

CHAPTER 3

Add OE Line - Screen Script

This screen script doesn’t make any customizations to the UI but monitors the data sources opened by the screen for
changes. When a new detail line is added, the screen adds another line with a fixed item.

Unlike in the view script solution, poplar_oeaddlne.OE0500_oe_add_line, we cannot pass parameters to
the screen script so the item mapping is hard coded.

Insert a new OE line following the insert of a line with a particular item.

Part of an introductory training to Extender. Learn more at https://poplar_addoelne.rtfd.io.

author: Chris Binckly
email: chris@2665093.ca
copyright: 2665093 Ontario Inc., 2019

This file is provided under a Creative Commons 4 Sharealike license. See https://creativecommons.org/licenses/by-sa/
4.0/ for details.

class poplar_oeaddlne.OE1100_oe_add_line.AddOeLneUI
A UI that monitors the order details and inserts a new line.

This UI class makes no changes to the OE1100 screen, it simply monitors and writes to the Data Sources
connected to it.

adsOEORDDonAfterInsert()
If the item inserted was ITEM, add a new line.

Raises None

Return type None

poplar_oeaddlne.OE1100_oe_add_line.ITEM = 'A1-103/0'
The item number that triggers the new line.

poplar_oeaddlne.OE1100_oe_add_line.NEW_ITEM_LINETYPE = 1
The item line type to insert.

19

https://poplar_addoelne.rtfd.io
mailto:chris@2665093.ca
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

poplar_oeaddlne Documentation, Release 1.3.0

poplar_oeaddlne.OE1100_oe_add_line.NEW_ITEM_NUM = 'A1-105/0'
The item number to insert.

poplar_oeaddlne.OE1100_oe_add_line.NEW_ITEM_QTY = 10
The item quantity to insert.

poplar_oeaddlne.OE1100_oe_add_line.main(args)
Executed by VI when the screen is loaded. Create our UI.

20 Chapter 3. Add OE Line - Screen Script

CHAPTER 4

Resources

4.1 All View Calls

A helpful reference for all supported calls for view scripts.

This script shows all the entry points that you can use when writing a script for a view. It doesn’t actually do anything
useful.

Copyright 2015 Orchid Systems

Updated 2019 2665093 Ontario Inc.

poplar_oeaddlne.resources.all_view_calls.onAfterAttributes(e)
Called after the attributes of a view field are changed.

Parameters result (int) – result of the attribute operation, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterCancel(result)
Called after a view is canceled.

Parameters result (int) – result of the cancel operation, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterClose(result)
Called after a view is closed.

Parameters result (int) – result of the close operation, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterCompose(event)
Called after a view is composed.

Parameters event (accpac.viewComposeArgs) – compose event information.

Returns must return accpac.Continue or the view will not load.

21

poplar_oeaddlne Documentation, Release 1.3.0

Return type int

poplar_oeaddlne.resources.all_view_calls.onAfterDelete(result)
Called after a view is deleted.

Parameters result (int) – result of the delete operation, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterDirty(result)
Called after a view is marked dirty.

Parameters result (int) – result of the mark dirty operation, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterFetchLock(result)
Called after a view releases a lock for a fetch.

Parameters result (int) – result of the fetch lock operation, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterGet(event)
Called after a field view is retrieved.

Params event undocumented.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterInit(result)
Called after a view is initialized.

Parameters result (int) – result of the initialization, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterInsert(result)
Called after a view is inserted.

Parameters result (int) – result of the insert operation, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterPost(result)
Called after a view is posted.

Parameters result (int) – result of the post operation, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterProcess(result)
Called after a view finishes processing.

Parameters result (int) – result of processing, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterPut(event)
Called after a value is put in the view.

Params event undocumented.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterRead(result)
Called after a record is read through the view.

22 Chapter 4. Resources

poplar_oeaddlne Documentation, Release 1.3.0

Parameters result (int) – result of the read operation, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterReadLock(result)
Called after a view releases a lock for a read.

Parameters result (int) – result of the read lock operation, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterRecordClear(result)
Called after a view is cleared.

Parameters result (int) – result of the clear operation, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterUnlock(result)
Called after a view is unlocked.

Parameters result (int) – result of the unlock operation, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterUpdate(result)
Called after a view is updated.

Parameters result (int) – result of the update operation, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onAfterVerify(result)
Called after a view is verified.

Parameters result (int) – result of the verify operation, 0 on success.

Return type None

poplar_oeaddlne.resources.all_view_calls.onBeforeAttributes(event)
Called before the attributes of a view field are changed.

Params event undocumented.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeCancel()
Called before a record is canceled through the view.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeClose()
Called before a view is closed.

Return type int

Returns accpac.Continue to allow the close, accpac.Abort to disallow it.

poplar_oeaddlne.resources.all_view_calls.onBeforeCompose(event)
Called before a view is composed.

Parameters event (accpac.viewComposeArgs) – compose event information.

Returns must return accpac.Continue or the view will not load.

4.1. All View Calls 23

poplar_oeaddlne Documentation, Release 1.3.0

Return type int

Get the handles for composed views to make it easier to work with related data.

A script attached to the Order Header OE0520 view can access the composed Order Details OE0522 view. Get
a handle on before compose, store it in the __main__ (script) namespace, and use it in other calls.

oeordd = None
def onBeforeCompose(event):

if len(event.views):
oeordd = event.views[0]

def onAfterPut(result):
If the put succeeded and a field = value, add a new order line
if result == 0 and me.get("FIELD") == "VALUE":

r = oeordd.recordClear()
r = oeordd.recordGenerate()
r = oeordd.put(...)
...

poplar_oeaddlne.resources.all_view_calls.onBeforeDelete()
Called before a record is deleted through the view.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeDirty()
Called before a view is marked dirty.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeFetch()
Called before a record is fetched through the view.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeFetchLock()
Called before a view locks for a fetch.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeGet(event)
Called before the value of a field is retrieved through the view.

Params event undocumented.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeInit()
Called before a view is initialized.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeInsert()
Called before a record is inserted into the view.

24 Chapter 4. Resources

poplar_oeaddlne Documentation, Release 1.3.0

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforePost()
Called before a record is posted through the view.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeProcess()
Called before a view runs processing.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforePut(event)
Called before the value of a field is put in a view field.

Params event undocumented.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeRead()
Called before a record is read from the view.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeReadLock()
Called before a view locks for a read.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeRecordClear()
Called before a view is cleared.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeUnlock()
Called before a view is unlocked.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeUpdate()
Called before a record is updated through the view.

Returns accpac.Continue or accpac.Abort

Return type int

poplar_oeaddlne.resources.all_view_calls.onBeforeVerify()
Called before a view is verified.

Returns accpac.Continue or accpac.Abort

Return type int

4.1. All View Calls 25

poplar_oeaddlne Documentation, Release 1.3.0

poplar_oeaddlne.resources.all_view_calls.onCommitRecord(op)
Called when a record in the revision list has been posted.

Parameters op (int) – operation code, one of:

• 1 = insert

• 2 = update

• 3 = delete

• 4 = move

Return type None

poplar_oeaddlne.resources.all_view_calls.onOpen()
Called when a view is opened.

Return type int

Returns accpac.Continue to enable the script, 0 to disable, anything else stops the view load-
ing.

poplar_oeaddlne.resources.all_view_calls.onOpenReadOnly()
Called when a view is opened in readonly mode.

Return type int

Returns accpac.Continue to enable the script, 0 to disable, anything else stops the view load-
ing.

poplar_oeaddlne.resources.all_view_calls.onRevisionCancelled()
Called when the revision list is cancelled, changes are discarded.

Return type None

poplar_oeaddlne.resources.all_view_calls.onRevisionPosted()
Called when a revision has been posted.

Return type None

Some references to get started with:

• The presentation: Extender Introduction.

• Sample scripts from Orchid.

• Sample scripts from 2665093

• Orchid Knowledgebase

There are sample customizations for the OE1100 screen from Orchid in poplar_oeaddlne.resources.
examples as well as a searchable, annotated version of All View Calls.

This package contains the content for a quick introductory training session to Orchid Extender. The training was
delivered to a team endeavouring to build their own scripts to manage OE Orders.

The content was developed and delivered by 2665093 Ontario Inc. If you’d like to receive custom Orchid Extender
training or hands on help solving a problem using Extender, send us an email.

Download the git repository and follow along with the presentation.

Once you’ve reached the Build It section, continue to Building the View Script.

26 Chapter 4. Resources

https://docs.google.com/presentation/d/13iTLpDOrrTWY5JIkQ5f-HfxFSBrjBUeYULsXtOrwo80
https://www.orchid.systems/resources/scripts
https://2665093.ca
https://orchidsystems.zendesk.com/
https://bitbucket.org/cbinckly/poplar_oeaddlne/src/master/poplar_oeaddlne/resources/examples/
https://www.orchid.systems/product/extender
https://2665093.ca
mailto:contact@2665093.ca
https://bitbucket.org/cbinckly/poplar_oeaddlne/
https://docs.google.com/presentation/d/13iTLpDOrrTWY5JIkQ5f-HfxFSBrjBUeYULsXtOrwo80/

Python Module Index

p
poplar_oeaddlne.OE0500_oe_add_line, 17
poplar_oeaddlne.OE1100_oe_add_line, 19
poplar_oeaddlne.resources.all_view_calls,

21

27

poplar_oeaddlne Documentation, Release 1.3.0

28 Python Module Index

Index

A
AddOeLneUI (class in

poplar_oeaddlne.OE1100_oe_add_line),
19

adsOEORDDonAfterInsert()
(poplar_oeaddlne.OE1100_oe_add_line.AddOeLneUI
method), 19

I
ITEM (in module poplar_oeaddlne.OE1100_oe_add_line),

19

M
main() (in module poplar_oeaddlne.OE1100_oe_add_line),

20

N
NEW_ITEM_LINETYPE (in module

poplar_oeaddlne.OE1100_oe_add_line),
19

NEW_ITEM_NUM (in module
poplar_oeaddlne.OE1100_oe_add_line),
19

NEW_ITEM_QTY (in module
poplar_oeaddlne.OE1100_oe_add_line),
20

O
onAfterAttributes() (in module

poplar_oeaddlne.resources.all_view_calls),
21

onAfterCancel() (in module
poplar_oeaddlne.resources.all_view_calls),
21

onAfterClose() (in module
poplar_oeaddlne.resources.all_view_calls),
21

onAfterCompose() (in module
poplar_oeaddlne.resources.all_view_calls),
21

onAfterDelete() (in module
poplar_oeaddlne.resources.all_view_calls),
22

onAfterDirty() (in module
poplar_oeaddlne.resources.all_view_calls),
22

onAfterFetchLock() (in module
poplar_oeaddlne.resources.all_view_calls),
22

onAfterGet() (in module
poplar_oeaddlne.resources.all_view_calls),
22

onAfterInit() (in module
poplar_oeaddlne.resources.all_view_calls),
22

onAfterInsert() (in module
poplar_oeaddlne.OE0500_oe_add_line),
17

onAfterInsert() (in module
poplar_oeaddlne.resources.all_view_calls),
22

onAfterPost() (in module
poplar_oeaddlne.resources.all_view_calls),
22

onAfterProcess() (in module
poplar_oeaddlne.resources.all_view_calls),
22

onAfterPut() (in module
poplar_oeaddlne.resources.all_view_calls),
22

onAfterRead() (in module
poplar_oeaddlne.resources.all_view_calls),
22

onAfterReadLock() (in module
poplar_oeaddlne.resources.all_view_calls),
23

onAfterRecordClear() (in module
poplar_oeaddlne.resources.all_view_calls),
23

onAfterUnlock() (in module

29

poplar_oeaddlne Documentation, Release 1.3.0

poplar_oeaddlne.resources.all_view_calls),
23

onAfterUpdate() (in module
poplar_oeaddlne.resources.all_view_calls),
23

onAfterVerify() (in module
poplar_oeaddlne.resources.all_view_calls),
23

onBeforeAttributes() (in module
poplar_oeaddlne.resources.all_view_calls),
23

onBeforeCancel() (in module
poplar_oeaddlne.resources.all_view_calls),
23

onBeforeClose() (in module
poplar_oeaddlne.resources.all_view_calls),
23

onBeforeCompose() (in module
poplar_oeaddlne.resources.all_view_calls),
23

onBeforeDelete() (in module
poplar_oeaddlne.resources.all_view_calls),
24

onBeforeDirty() (in module
poplar_oeaddlne.resources.all_view_calls),
24

onBeforeFetch() (in module
poplar_oeaddlne.resources.all_view_calls),
24

onBeforeFetchLock() (in module
poplar_oeaddlne.resources.all_view_calls),
24

onBeforeGet() (in module
poplar_oeaddlne.resources.all_view_calls),
24

onBeforeInit() (in module
poplar_oeaddlne.resources.all_view_calls),
24

onBeforeInsert() (in module
poplar_oeaddlne.resources.all_view_calls),
24

onBeforePost() (in module
poplar_oeaddlne.resources.all_view_calls),
25

onBeforeProcess() (in module
poplar_oeaddlne.resources.all_view_calls),
25

onBeforePut() (in module
poplar_oeaddlne.resources.all_view_calls),
25

onBeforeRead() (in module
poplar_oeaddlne.resources.all_view_calls),
25

onBeforeReadLock() (in module

poplar_oeaddlne.resources.all_view_calls),
25

onBeforeRecordClear() (in module
poplar_oeaddlne.resources.all_view_calls),
25

onBeforeUnlock() (in module
poplar_oeaddlne.resources.all_view_calls),
25

onBeforeUpdate() (in module
poplar_oeaddlne.resources.all_view_calls),
25

onBeforeVerify() (in module
poplar_oeaddlne.resources.all_view_calls),
25

onCommitRecord() (in module
poplar_oeaddlne.resources.all_view_calls),
25

onOpen() (in module
poplar_oeaddlne.OE0500_oe_add_line),
17

onOpen() (in module
poplar_oeaddlne.resources.all_view_calls),
26

onOpenReadOnly() (in module
poplar_oeaddlne.resources.all_view_calls),
26

onRevisionCancelled() (in module
poplar_oeaddlne.resources.all_view_calls),
26

onRevisionPosted() (in module
poplar_oeaddlne.resources.all_view_calls),
26

P
poplar_oeaddlne.OE0500_oe_add_line (mod-

ule), 17
poplar_oeaddlne.OE1100_oe_add_line (mod-

ule), 19
poplar_oeaddlne.resources.all_view_calls

(module), 21

30 Index

	Walkthrough
	Building the View Script
	Import accpac and Scaffold
	Implement the onAfter call
	Add Parameters
	Testing

	Building the Screen Script
	Import accpac and Scaffold
	Implement the onAfter call
	Add Parameters
	Testing

	Making an Extender Module
	Module format
	View Scripts

	Custom Tables for Item Mappings
	Designing the Table Schema
	Creating the Table Schema
	Using Custom Tables
	Crafting by Hand

	Adding Entries to the Table
	Adding the Lookup to the Script

	Add OE Line - View Script
	Add OE Line - Screen Script
	Resources
	All View Calls

	Python Module Index
	Index

